TaRar1 Is Involved in Wheat Defense against Stripe Rust Pathogen Mediated by YrSu
نویسندگان
چکیده
RAR1 is a eukaryotic zinc-binding protein first identified as required for race-specific resistance to powdery mildew in barley. To study the function of TaRAR1 involvement in wheat (Triticum aestivum L.) defense against the infection of stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst), we identified and cloned three wheat homeologous genes highly similar to the barley HvRar1, designated as TaRar1-2A, TaRar1-2B, and TaRar1-2D. The three TaRAR1 proteins all contain two conserved cysteine-and histidine-rich domains (CHORD-I and -II) shared by known RAR1-like proteins. Characterization of TaRar1 expression revealed that the expression was tissue-specific and up-regulated in wheat during stripe rust infection. Moreover, the transcription of TaRar1 was induced by methyl jasmonate, ethylene, and abscisic acid hormones. The same results were observed with drought and wound treatments. After TaRar1 was silenced in wheat cultivar Suwon11 containing the stripe rust resistance gene YrSu, the endogenous salicylic acid (SA) level, the hydrogen peroxide (H2O2) accumulation and the degree of hypersensitive response (HR) were significantly decreased, and the resistance to the avirulent pathotype of stripe rust was compromised. Meanwhile, the expression of catalase, an enzyme required for H2O2-scavenging, was up-regulated. Taken together, we concluded that TaRar1 is involved in wheat defense against stripe rust mediated by YrSu, and the defense was through SA to influence reactive oxygen species accumulation and HR.
منابع مشابه
TaAbc1, a Member of Abc1-Like Family Involved in Hypersensitive Response against the Stripe Rust Fungal Pathogen in Wheat
To search for genes involved in wheat (Triticum aestivum L.) defense response to the infection of stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst), we identified and cloned a new wheat gene similar to the genes in the Abc1-like gene family. The new gene, designated as TaAbc1, encodes a 717-amino acid, 80.35 kD protein. The TaAbc1 protein contains two conserved domains shared by Ab...
متن کاملRLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most serious diseases of wheat; therefore, exploring effective resistance-related genes is critical for breeding and studying resistance mechanisms. However, only a few stripe rust resistance genes and defence-related genes have been cloned. Moreover, transgenic wheat with enhanced stripe rust resistance has rarely ...
متن کاملTaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat
LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone T...
متن کاملتفکیک فاکتورهای بیماری زایی در پنج نژاد پر آزار زنگ زرد گندم (Puccinia striiformis f.sp. tritici) و شناسایی منابع مقاومت نسبت به آنها
Identifying the virulence factors of stripe rust (Puccinia striiformis f. sp. tritici) disease, awareness of numbers and identification of resistance genes in wheat breeding materials, accelerate the process of producing the resistance cultivars which are sustained against different races. To study the genetic and pathogenic and non-pathogenic spectrum of genes, five hot races of stripe rust wh...
متن کاملInfluence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. stri...
متن کامل